
Advanced Graphics

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

OpenGL
and

Shaders

3D technologies today
Java

● Common, re-usable language; well-
designed

● Steadily increasing popularity in
industry

● Weak but evolving 3D support
C++

● Long-established language
● Long history with OpenGL
● Long history with DirectX
● Losing popularity in some fields

(finance, web) but still strong in
others (games, medical)

JavaScript
● WebGL is surprisingly popular

OpenGL
● Open source with many

implementations
● Well-designed, old, and still evolving
● Fairly cross-platform

DirectX/Direct3d (Microsoft)
● Microsoft™ only
● Dependable updates

Mantle (AMD)
● Targeted at game developers
● AMD-specific

Higher-level commercial libraries
● RenderMan
● AutoDesk / SoftImage

OpenGL
OpenGL is…
● Hardware-independent
● Operating system independent
● Vendor neutral

On many platforms
● Great support on Windows, Mac,

linux, etc
● Support for mobile devices with

OpenGL ES
● Android, iOS (but not

Windows Phone)
● Android Wear watches!

● Web support with WebGL

A state-based renderer
● many settings are configured

before passing in data; rendering
behavior is modified by existing
state

Accelerates common 3D graphics
operations
● Clipping (for primitives)
● Hidden-surface removal (Z-

buffering)
● Texturing, alpha blending

NURBS and other advanced
primitives (GLUT)

OpenGL in Java
● JOGL: “Java bindings

for OpenGL”
http://jogamp.org/jogl/
JOGL apps can be deployed as
applications or as applets, making it
suitable for educational web demos
and cross-platform applications.
● If the user has installed the latest

Java, of course.
● And if you jump through Oracle’

s authentication hoops.
● And… let’s be honest, 1998

called, it wants its applets back.

JOGL shaders in action.
Image from Wikipedia

● LWJGL: “Lightweight
Java Games Library”

http://www.lwjgl.org/
LWJGL is targeted at game
developers, so it’s got a really solid
threading model and good support for
new input methods like joysticks,
gaming mice,
and the Oculus
Rift.

http://jogamp.org/jogl/www/
http://jogamp.org/jogl/www/
http://www.lwjgl.org/
http://www.lwjgl.org/

The CPU (your processor and friend) delivers data to the GPU
(Graphical Processing Unit).
● The GPU takes in streams of vertices, colors, texture coordinates and

other data; constructs polygons and other primitives; then uses
shaders to draw the primitives to the screen pixel-by-pixel.

● The GPU processes the vertices according to the state set by the
CPU; for example, “every trio of vertices describes a triangle”.

This process is called the rendering pipeline. Implementing the rendering
pipeline is a joint effort between you and the GPU.

You’ll write shaders in the OpenGL shader language, GLSL.
You’ll write vertex and fragment shaders. (And maybe others.)

OpenGL architecture

The OpenGL rendering pipeline

An OpenGL application assembles
sets of primitives, transforms and
image data, which it passes to
OpenGL’s GLSL shaders.
● Vertex shaders process every vertex

in the primitives, computing info
such as position of each one.

● Fragment shaders compute the
color of every fragment of every
pixel covered by every primitive.

Primitives and image data

Alpha, stencil, depth tests
Framebuffer blending

Transform and lighting

Primitive assembly

Clipping

Texturing

Fog, antialiasing

Application

Vertex

Geometry

Fragment

Framebuffer

The OpenGL rendering pipeline
(simplified view)

Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and ATI (bottom)

What are we targeting?

OpenGL shaders give the
user control over each
vertex and each fragment
(each pixel or partial
pixel) interpolated
between vertices.
After vertices are processed, polygons are rasterized. During
rasterization, values like position, color, depth, and others are
interpolated across the polygon. The interpolated values are
passed to each pixel fragment.

Think parallel

Shaders are compiled from within your code
● They used to be written in assembler
● Today they’re written in high-level languages

They execute on the GPU
GPUs typically have multiple processing units
That means that multiple shaders execute in parallel
● We’re moving away from the purely-linear flow of early “C”

programming models

Shader example one – ambient lighting
#version 330

uniform mat4 mvp;

in vec4 vPosition;

void main() {
 gl_Position = mvp *
vPosition;

}

#version 330

out vec4 fragmentColor;

void main() {
 fragmentColor =
 vec4(0.2, 0.6, 0.8, 1);
}

// Vertex Shader // Fragment Shader

GLSL

Notice the C-style syntax
void main() { … }

The vertex shader uses two inputs, one four-element vec4
and one four-by-four mat4 matrix; and one standard
output, gl_Position.

The line
gl_Position = mvp * gl_Vertex;

applies our model-view-projection matrix to calculate the
correct vertex position in perspective coordinates.
This fragment shader implements the most basic ambient

lighting by setting its one output, col, to a fixed value.

GLSL

The language design in GLSL is strongly based on
ANSI C, with some C++ added.

● There is a preprocessor--#define, etc
● Basic types: int, float, bool

● No double-precision float
● Vectors and matrices are standard: vec2, mat2 = 2x2; vec3,

mat3 = 3x3; vec4, mat4 = 4x4
● Texture samplers: sampler1D, sampler2D, etc are used to

sample multidemensional textures
● New instances are built with constructors, a la C++
● Functions can be declared before they are defined, and

operator overloading is supported.

GLSL

Some differences from C/C++:
● No pointers, strings, chars; no unions, enums; no bytes, shorts, longs;

no unsigned. No switch() statements.
● There is no implicit casting (type promotion):

float foo = 1;
fails because you can’t implicitly cast int to float.

● Explicit type casts are done by constructor:
vec3 foo = vec3(1.0, 2.0, 3.0);
vec2 bar = vec2(foo); // Drops foo.z

Function parameters are labeled as in, out, or uniform.
● Functions are called by value-return, meaning that values are copied

into and out of parameters at the start and end of calls.

Program

OpenGL / GLSL API - setup
To install and use a shader in OpenGL:
1. Create one or more empty shader objects with

glCreateShader.
2. Load source code, in text, into the shader with

glShaderSource.
3. Compile the shader with

glCompileShader.
4. Create an empty program object with

glCreateProgram.
5. Bind your shaders to the program with

glAttachShader.
6. Link the program (ahh, the ghost of C!) with

glLinkProgram.
7. Activate your program with

glUseProgram.

Vertex
shader

Fragment
shader

Compiler

OpenGL

Linker

Shader gallery II

Above: Kevin Boulanger (PhD thesis,
“Real-Time Realistic Rendering of Nature
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)

What will you have to write?

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

1. OpenGL / GLSL API - variables

GLSL shaders use named parameters which can be looked up
from OpenGL.

uniform mat4 modelToScreen;

in vec4 vPosition;

...

The OpenGL API looks up the location integers of these
parameters and uses the location as an address:

int attributeId = glGetAttribLocation(program,
"vPosition");

glEnableVertexAttribArray(attributeId);

glVertexAttribPointer(attributeId, ...);

GLSL

OpenGL

Passing geometry to OpenGL

Vertex buffer objects store arrays of vertex data--
positional or descriptive. With a vertex buffer
object (“VBO”) you can compute all vertices at
once, pack them into a VBO, and pass them to
OpenGL en masse to let the GPU processes all
the vertices together.

To group different kinds of vertex data together,
you can serialize your buffers into a single
VBO, or you bind and attach them to a Vertex
Array Objects. Each vertex array object
(“VAO”) can contain multiple VBOs.

Although not required, VAOs help you to organize
and isolate the data in your VBOs.

Vertex Array
Object

Vertex Buffer
(positions)

Vertex Buffer
(colors)

Vertex Buffer
(normals)

Vertex Buffer
(texture info)

Vertex arrays contain vertex buffers

First, we allocate a vertex array:
 private void createAndBindVertexBuffer() {

 int vertexArrayId = glGenVertexArrays();

 glBindVertexArray(vertexArrayId);

 }

Then we fill attach a vertex buffer with vertex coordinates:
 private void addVertexBuffer(String name, FloatBuffer data) {

 int BufferId = glGenBuffers();

 glBindBuffer(GL_ARRAY_BUFFER, bufferId);

 glBufferData(GL_ARRAY_BUFFER, data, GL_STATIC_DRAW);

 int attributeId = glGetAttribLocation(program, name);

 glEnableVertexAttribArray(attributeId);

 glVertexAttribPointer(attributeId, 3, GL11.GL_FLOAT, false, 0, 0);

 }

Vertex buffers contain vertex data

In Java, vertex data is typically packed into a FloatBuffer:
static final float[][] CORNERS = {

 {-0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f,-0.8f}, {-0.8f, 0.8f,-0.8f},

 {-0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f,-0.8f}, {-0.8f,-0.8f,-0.8f},

};

static final int[] INDICES = { 0, 1, 2, 3, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 4 };

private void drawCube() {

 FloatBuffer vertices = Buffers.newDirectFloatBuffer(INDICES.length * 3);

 for (int index : INDICES) { vertices.put(CORNERS[index]); }

 vertices.rewind();

 fillCurrentVertexBuffer(“vPosition”, vertices);

 // ...

 glDrawArrays(GL_LINE_STRIP, 0, INDICES.length);

}

...and it’s boring, because we have no 3D.

Binding multiple buffers in a VAO

Need more info? We can pass more than just coordinate data--we can create as
many buffer objects as we want for different types of per-vertex data.

To bind two arrays of floats together, we build a vertex array object as before:
int vertexArrayId = glGenVertexArrays();

glBindVertexArray(vertexArrayId);

We bind a vertex buffer object for coordinate data, then another for normals:
addVertexBuffer(“vPosition”, vertices);

addVertexBuffer(“vNormal”, normals);

Later, to render, we’ll unbind the buffers and work only with the vertex array:
glBindBuffer(GL_ARRAY_BUFFER, 0);

glDrawArrays(GL_LINE_STRIP, 0, INDICES.length);

Memory management:
Lifespan of an OpenGL object

Most objects in OpenGL are created and deleted explicitly. Because these entities
live in the GPU, they’re outside the scope of Java’s garbage collection.
The typical creation and deletion of an OpenGL object look like this:

int createAndBindVBO() {

 int name = glGenBuffers();
 glBindBuffer(GL_ARRAY_BUFFER, name);
 return name;
}

// Work with your object

void deleteVBO(int vboName) {
 glDeleteBuffers(vboName);
}

2. Getting some perspective

To add 3D perspective to our flat model, we face three
challenges:

● Compute a 3D perspective matrix
● Pass it to OpenGL, and on to the GPU
● Apply it to each vertex

To do so we’re going to need to apply our perspective matrix
in the shader, which means we’ll need to build our own 4x4
perspective transform.

4x4 perspective matrix transform

Every OpenGL package provides utilities to build a
perspective matrix. You’ll usually find a method named
something like glGetFrustum() which will assemble a 4x4
grid of floats suitable for passing to OpenGL.

Or you can build your own:
α: Field of view, typically
50°

ar: Aspect ratio of width
over height

NearZ: Near clip plane

FarZ: Far clip plane

P =

Passing uniform data to GLSL

The method glGetUniformLocation() will look up the
location of a uniform parameter in a shader program.
(This is analogous to the attribute lookup seen earlier.)

 private void updateM4x4(String name, M4x4 T) {

 int uniform = glGetUniformLocation(program, name);

 if (uniform != -1) {

 glUniformMatrix4(uniform, false, T.asFloats());

 }

 }

Reading uniform data in GLSL

Next we need to modify our shader to transform our vertices
by our perspective matrix.

This shader takes a matrix and applies it to each vertex:

#version 330

uniform mat4 modelToScreen;

in vec4 vPosition;

void main() {

 gl_Position = modelToScreen * vPosition;

}

Multiple uniforms
#version 330

uniform mat4 modelToScreen;

uniform mat4 modelToWorld;

uniform mat3 normalToWorld;

in vec4 vPosition;

in vec3 vNormal;

void main() {

 vec3 p = (modelToWorld * vPosition).xyz;

 vec3 n = normalize(normalToWorld * vNormal);

 // ...

Use multiple uniforms for
different fields that are
constant throughout the
rendering pass, such as
transform matrices and
lighting coordinates.

3. Lighting and Shading

● Vertex shader outputs are interpolated across
fragments.

This makes the implementation of classic illumination models
like Gouraud shading very straightforward.

// ...

out vec4 color;

void main() {

 vec3 N = // ...

 vec3 L = // ...

 float diffuse = Kd * clamp(0, dot(N, L), 1);

 color = vec4(PURPLE * diffuse, 1.0);

}

// ...

in vec4 color;

out vec4 fragmentColor;

void main() {

 fragmentColor = color;

}

// Vertex Shader // Fragment Shader

Diffuse lighting
 d = kD(N•L)

expressed as a shader

Gouraud and Phong

Gouraud shading
● Compute color in vertex shader
● Let OpenGL interpolate color

across fragments
● Output interpolated color

Phong shading
● Compute normal in vertex shader
● Let OpenGL interpolate normal

across fragments
● Compute color separately for

each fragment

GLSL includes handy helper methods for illumination, such as a reflect() method that reflects one vector across another--
perfect for specular highlighting. For a few examples, check out the demo source code on github.

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 vec3 color = isOutsideFace ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

Procedural texturing in the
fragment shader

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 bool isMouth =

 (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

// ...

const vec3 CENTER = vec3(0, 0, 1);

const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);

const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);

// ...

void main() {

 bool isOutsideFace = (length(position - CENTER) > 1);

 bool isEye = (length(position - LEFT_EYE) < 0.1)

 || (length(position - RIGHT_EYE) < 0.1);

 bool isMouth = (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

(Code truncated for brevity--again, check out
the source on github for how I did the curved
mouth and oval eyes.)

Voronoi diagrams in the fragment
shader

For a limited set of generating
points, can compute the
Voronoi Diagram in the
fragment shader.

Simple version: “F2-F1”: find
the nearest two generating
points by iteration, render the
isolines where their forces = 0.

Better: With a two-pass solution,
can generate the isolines within
the cell as well (see link)

Iñigo Quilez (Pixar, Oculus)
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

More advanced surface effects

● Specular highlighting
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

Recommended reading
Course source code on Github -- many sample shaders
(https://github.com/AlexBenton/AdvancedGraphics/tree/master/AdvGraph1415)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner

ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and
raycast scenes

https://github.com/AlexBenton/AdvancedGraphics/tree/master/AdvGraph1415
http://shadertoy.com

